

L'avenir de la bioraffinerie Vision du Pôle Industries et Agroressources

Daniel THOMAS

Président du pôle de compétitivité Industries et Agro Ressources Professeur, UMR CNRS 6022 Génie Enzymatique et Cellulaire Université de Technologie de Compiègne

AR - Competitiveness Cluster with a Worldwide Vocation

Gaz naturel

Pétrole

Charbon

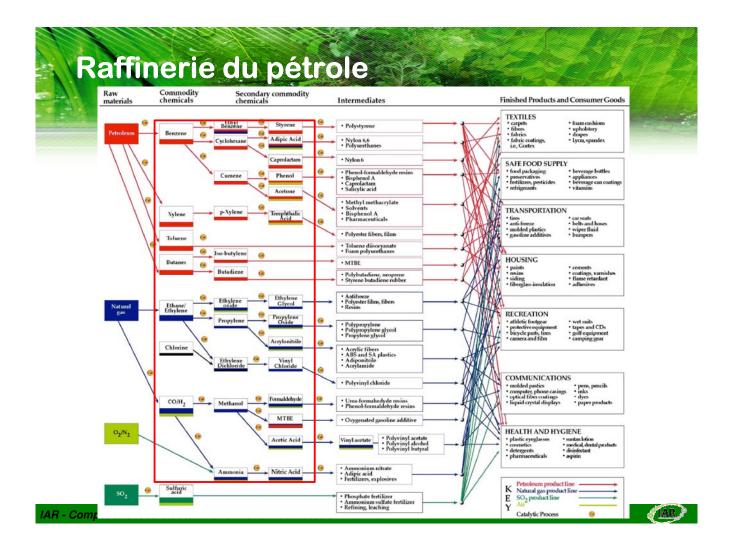
Grands produits alimentaires

- - céréales (blé, riz, maïs, orge ...) - oléagineux (soja, arachide, olive ...)

 - sucres (betterave, canne à sucre)
 - produits tropicaux (thé, café, cacao)
 - productions animales (bovins, porcins, ovins)

Bois

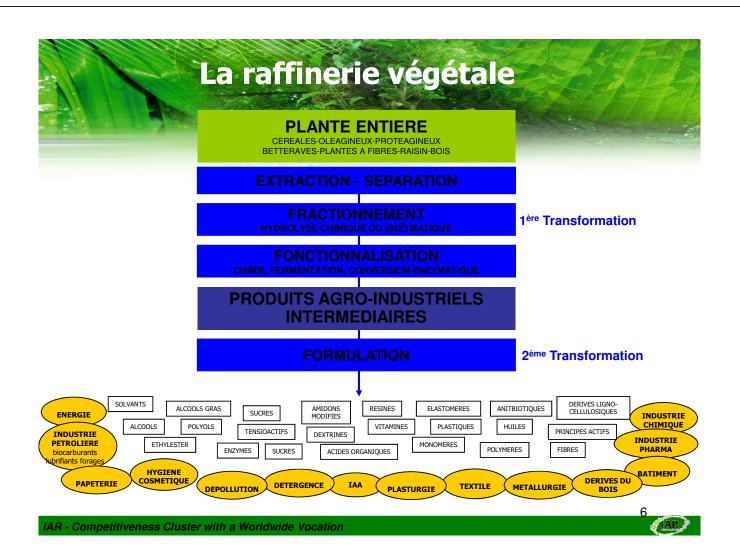
- celluloses, lignine

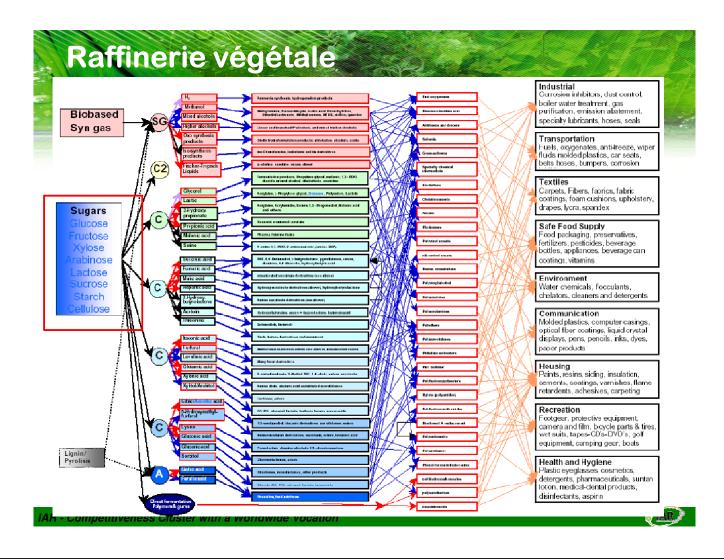

Latex de l'hévéa

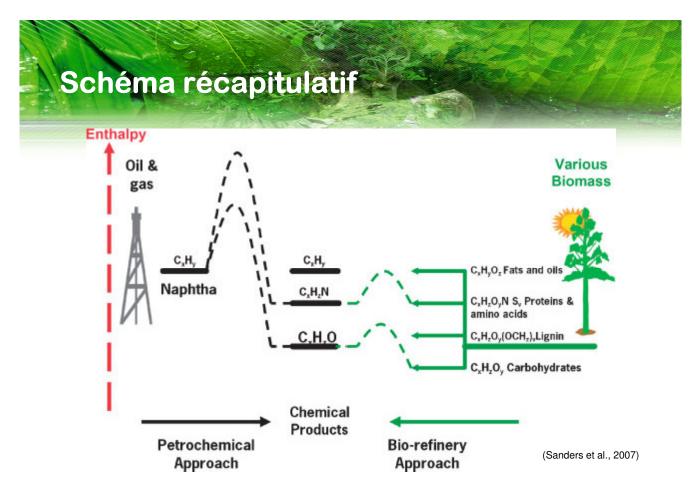
- caoutchouc naturel

Coton, laine, cuir, tabac

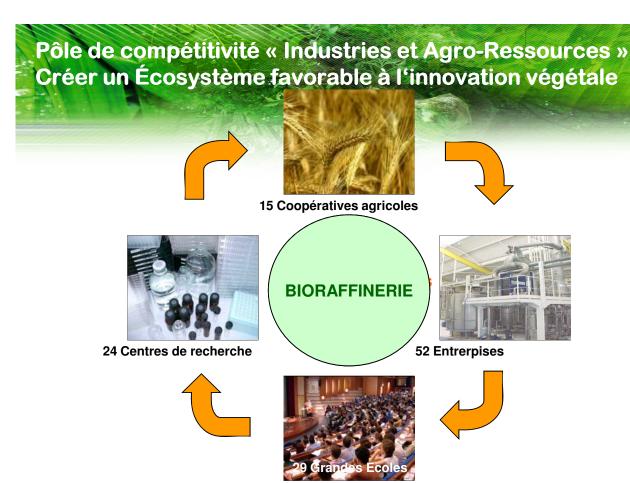
Plantes aromatiques

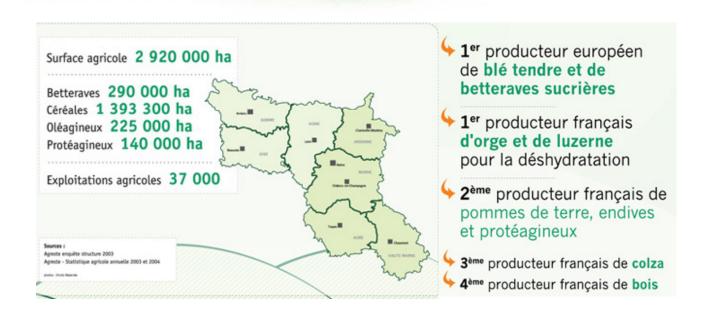

- Production mondiale: 170 milliards t/an
- Utilisation 6 milliards t/an (3.5%)
- 3.7 milliards tonnes: usage alimentaire
- 2 milliards tonnes : bois (énergie), papier, construction
- 0.3 milliards tonnes: non-alimentaire
- Biomasse = source d'énergie
- Biomasse = source de molécules



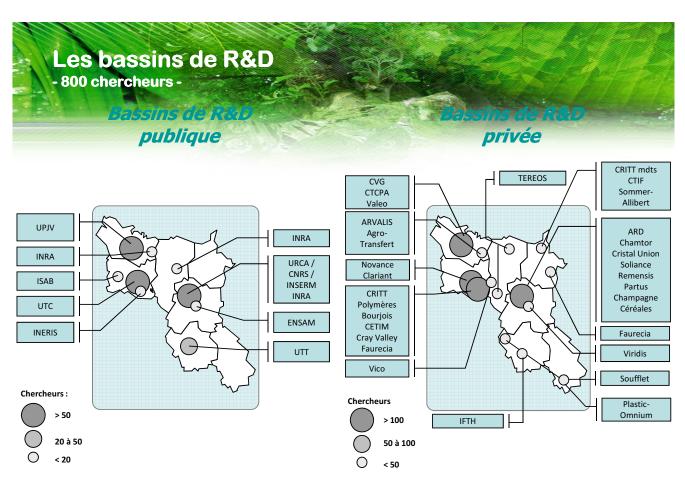

Utilisation de la biomasse

Agro ressources Utilisation de tous les composants de la plante Nouveaux procédés BIO RAFFINERIE Nouveaux marchés Demande de produits renouvelables Respectueux de l'environnement




Pôle Industries et Agro-Ressources

- Le Pôle de Compétitivité « Industries et Agro-Ressources » a vocation à rassembler les acteurs de la recherche, de l'enseignement et de l'industrie de Champagne-Ardenne et de Picardie autour d'un axe commun : les valorisations non alimentaires du végétal
- Réunir les compétences permettant d'effectuer toutes les étapes depuis le laboratoire jusqu'au développement industriel dans une perspective de développement durable
- Objectif: Etre la référence européenne des valorisations industrielles des agro-ressources à l'horizon 2015



Les bassins agricoles régionaux

Bio Énergie

CHALEUR

« Bio combustibles »

- Biomasse : paille, céréales, bois...
- Géothermie

ELECTRICITE

- Biogaz
- Éolien
- Hydraulique
- Thermique Photovoltaïque

BIOCARBURANTS

(bioéthanol, diester)

IAR - Competitiveness Cluster with a Worldwide Vocation

Agro Matériaux

BATIMENT

(capteurs biochimiques et biométriques, biopolymères

PAPETERIE

(fibres, dérivés ligno-cellulosiques...)

Papier végétal (Lin)

TEXTILE

(lin, chanvre, coton...)

(automobile, pneumatique, films de paillage, polymères...)

METALLURGIE

EMBALLAGE

(sacs plastiques biodégradables, emballages ménagers...)

Bio Molécules

PHARMACEUTIQUE

(vitamines, antibiotiques...)

HYGIENE

(crèmes, gels douche, écrans solaires, shampoings...)

HUILES & LUBRIFIANTS

DETERGENTS

(lessive, liquide vaisselle, désinfectant, nettoyant alcalin...)

ALCOOLS & SOLVANTS

TENSIO-ACTIFS

IAR - Competitiveness Cluster with a Worldwide Vocation

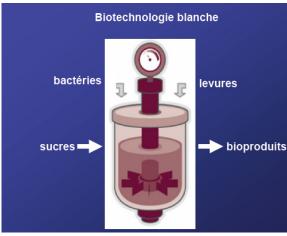
Biotechnologies

Biotechnologies Rouges Applications médicales (protéines thérapeutiques...)

Biotechnologies vertes Végétal (Agriculture, alimentation, OGM...)

Biotechnologies

Biotechnologies
Bleues
La vie Marine


Biotechnologies Blanches Industrielles

Biotechnologies
Jaunes
L'environnement

Biotechnologies Blanches

Application des biotransformations (enzymes, microorganismes...) et des fermentations pour la fabrication de produits chimiques et de bioénergie à l'échelle industrielle par l'utilisation de la biomasse comme matière première renouvelable.

IAR - Competitiveness Cluster with a Worldwide Vocation

Biotechnologies Industrielles

- Adaptation des procédés
 - Capable de respecter la totalité de la plante
 - Meilleure maitrise des procédés
 - Méthodes douces: enzymes, fermentation...
 - Respect de l'environnement, des travailleurs: impact sociétal
- Création de valeur ajoutée
- Développement durable
- Ecologie industrielle

Principes de la chimie Verte

- 1. Prévention
- 2. Économie d'atomes
- 3. Synthèses chimiques moins nocives
- 4. Conception de produits chimiques plus sécuritaires
- 5. Solvants et auxiliaires plus sécuritaires
- 6. Amélioration du rendement énergétique
- 7. Utilisation de matières premières renouvelables
- 8. Réduction de la quantité de produits dérivés
- 9. Catalyse
- 10. Conception de substances non-persistantes
- 11. Analyse en temps réel de la lutte contre la pollution
- 12. Chimie essentiellement sécuritaire afin de prévenir les accidents

IAR - Competitiveness Cluster with a Worldwide Vocation

Stratégie d'obtention des synthons

- Besoin d'obtenir des molécules simples avec des chaines carbonées de longueur variable (C1, C2, C3, C4...)
- Deux stratégies
 - Récupérer la molécule quand elle existe in planta (glucose par exemple)
 - Fractionner des polymères existant et transformer les molécules obtenues par biotechnologie

Obtention de molécules identiques

· Propylène:

- dérivé de **1-propanol**, **isopropanol** obtenus par fermentation en cours de développement
- « ABE » process: procédé fermentaire: à partir de l'acétone, obtention de **propylène** et d'**isobutanol**

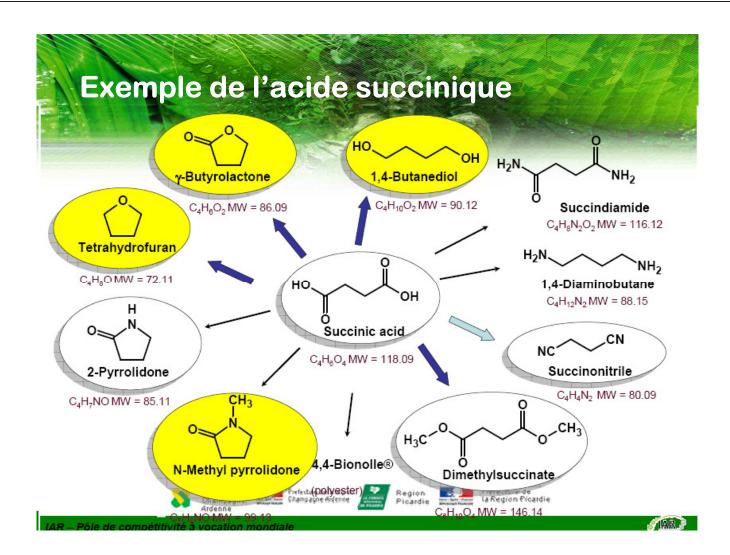
Glycols

- 1,3 propanediol: Dupont a développé une méthode de production à partir de glucose, glycerol par fermentation
- 1,2 propanediol: a partir de glucose, xylose, galactose

IAR - Competitiveness Cluster with a Worldwide Vocation

Obtention de molécules identiques

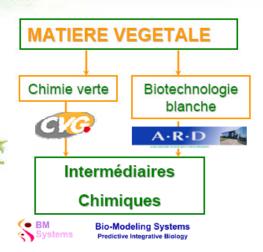
- Butanediène: via la production de 2,3 butanediol
 - » Bacillus polymyxa
 - » Klebsiella pneumoniae


Gluc, xylose-----> 2,3 but + Ethanol Arabinose (rendement plus faible)

Molécules dérivés des sucres

Molécules de base pour la chimie

Building Blocks
1,4 succinic, fumaric and malic acids
2,5 furan dicarboxylic acid
3 hydroxy propionic acid
aspartic acid
glucaric acid
glutamic acid
itaconic acid
levulinic acid
3-hydroxybutyrolactone
glycerol
sorbitol
xylitol/arabinitol

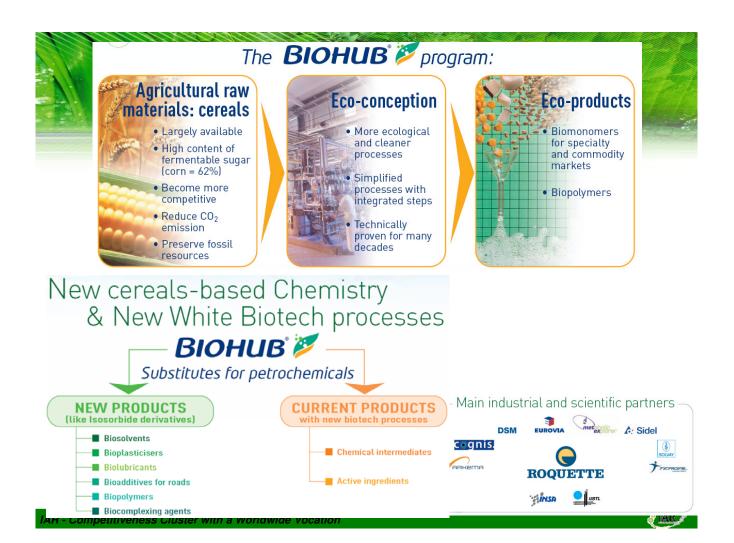


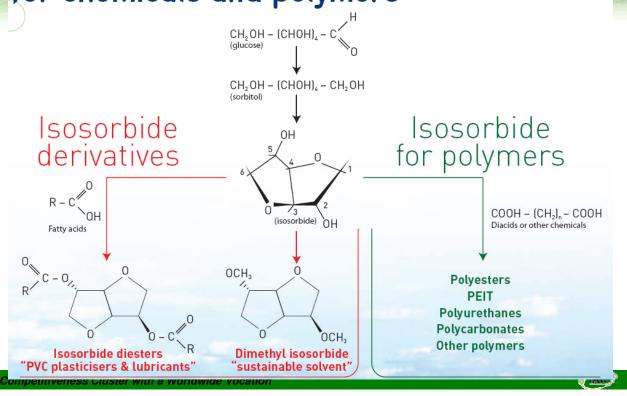
PROJET SYNTHONS Développer des Intermédiaires Chimiques

Création de deux plateformes technologiques d'évaluation dont le rôle est de déterminer en prédictif la faisabilité de la production d'intermédiaires de synthèse à partir de matières

à partir de matières premières renouvelables extraites de plantes de grande culture.

90 % de la chimie organique serait issue d'origine renouvelable d'ici 2090 !




Prefecture de la Region Picardie

27

AR – Pôle de compétitivité à vocation mondiale

An exemple of **BIOHUB** platforms: |SOSOTDIOE as a sustainable diole for chemicals and polymers

Conclusion

- Avantages de la biotechnologie industrielle
 - Utilisation matières premières renouvelables
 - Diminution des solvants employés: pour les biocatalyses enzymatiques, milieu aqueux
 - Diminution énergie nécessaire aux réactions
- Inconvénients:
 - Adaptation des procédés
 - Importance de qualité, quantité matière première
 - Mobilisation de la ressource
 - Importance du cycle de vie du produit et du bilan environnemental

Perspectives

- Développement de nouveaux outils:
 - Biocatalyse: nouvelles enzymes, optimisation des procédés
 - Génie métabolique: micro-organismes plus performants (bactéries, champignons, algues)

IAR - Competitiveness Cluster with a Worldwide Vocation

Opportunités pour les acteurs impliqués

- Le pôle IAR couvre des secteurs économique diversifiés
- Les acteurs potentiellement concernés par les thématiques IAR sont très importants
- Possibilité d'intégrer des projets innovants, vecteurs de développement :
 - partenaires complémentaires
 - soutien financier
 - risque partagé
- Veille économique via la plateforme tremplin <u>www.iar-pole.com</u>
- Mise en place de l'action « Mettez des agro-ressources dans votre entreprise » a destination des PME

Projets du pôle IAR

- Sur la période 2006-2008
- 42 projets labellisés
- Pour un montant de 72 millions d'euros
- Financement FUI, ANR, Régions, OSEO, Union Européenne

