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Bidirectional VF Control of Single and 3-Phase Induction 

Motors Using the PIC16F72
INTRODUCTION

Single-phase induction motors are extensively used in
appliances and industrial controls. The Permanent Split
Capacitor (PSC) single-phase induction motor is the
simplest and most widely used motor of this type. The
classification, construction and working principle of
single-phase induction motors are explained in detail in
the application note “AC Induction Motor
Fundamentals” (AN887) available from Microchip. For
VF theory and basic operations, refer to AN887
mentioned above, and   “Speed Control of 3-Phase
Induction Motor Using PIC18 Microcontrollers”
(AN843).

By design, PSC motors are unidirectional, which
means they are designed to rotate in one direction. By
adding either extra windings, and external relays and
switches, or by using gear mechanisms, the direction of
rotation can be changed. In this application note we will
discuss in detail, how to control the speed of a PSC
motor in both directions using a PIC16F72
microcontroller and power electronics.

The PIC16F72 microcontroller was chosen because it
is one of the simplest and low-cost general purpose
microcontrollers Microchip has in its portfolio. Even
though it does not have the PWMs in hardware to drive
complementary PWM outputs with dead band inserted,
all PWMs are generated in firmware using timers and
output to general purpose output pins.

THEORY OF OPERATION

A PSC motor is usually a 2-phase asymmetrically
wound motor. The main winding is designed to take the
load current. The current flowing through the start
winding is much less than the main winding. Therefore,
the start winding will have a different electrical
characteristic compared to the main winding. In order
to produce the Magnetomotive Force (MMF) produced
by the start winding very near to the main winding, the
start winding has additional turns, higher resistance,
and reduced current flowing through it. This makes the
motor windings asymmetrical.

The motor is energized with a single-phase AC power
supply, with a capacitor connected in series with the
start winding (also called an auxiliary winding) as
shown in Figure 1. The value of the capacitor is chosen
so that the total impedance on the auxiliary winding
produces sufficient phase shift in current to generate a
rotating magnetic field in the air gap.

Typically, the current flowing through the start winding
leads the current flowing through the main winding by
90 degrees.

By adding a microcontroller-based control circuit to the
motor, the voltage across the main winding and start
winding can be maintained at 90 degrees to each other.
The other advantage is that the starting capacitor can
be removed from the circuit, thus reducing the total
system cost.

FIGURE 1: ELECTRICAL EQUIVELANT 
CIRCUIT OF A PSC MOTOR

A multiphase inverter can be used to drive the motor.
Two methods are discussed in the next section.
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DRIVE TOPOLOGY

Using an H-Bridge Inverter

The first approach is relatively easy as far as the
power circuit and control circuit are concerned. On
the input side, a voltage doubler is used and on the
output side an H-bridge, or 2-phase inverter, is used
as shown in Figure 2. One end of the main and start
windings are connected to each half bridge and the
other ends are connected together to the neutral
point of the AC power supply, which also serves as
the center point for the voltage doubler.

The control circuit requires four PWMs with two
complementary pairs with sufficient dead band
between the complementary outputs. PWM0-PWM1
and PWM2-PWM3 are the PWM pairs with dead band.
The PIC16F72 does not have PWMs designed in the
hardware to output the way we need. Therefore, the
PWMs should be generated in firmware and output to
the port pins. Using PWMs, the DC bus is synthesized
to give two sine voltages at 90 degrees out of phase
with varying amplitude and varying frequency
according to the VF profile. If the voltage applied to the
main winding lags the start winding by 90 degrees,  the
motor runs in one (i.e., forward) direction. To reverse
the direction of rotation, the voltage supplied to the
main winding should lead the voltage supplied to the
start winding.

Figure 3 and Figure 4 show the main and start winding
voltages in forward and reverse respectively.

FIGURE 2: PSC DRIVE WITH AN H-BRIDGE
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FIGURE 3: MOTOR RUNNING IN FORWARD DIRECTION

FIGURE 4: MOTOR RUNNING IN REVERSE DIRECTION
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This method of controlling a PSC type motor has a
few disadvantages.

• Because the main winding and start windings 
have different electric characteristics, the current 
flowing through each switch is unbalanced. Over 
time, this may lead to premature breakdown of 
switching devices in the inverter.

• The common point of the windings is directly 
connected to the neutral power supply. This may 
increase the switching signal coming into the 
mains power supply and increase the noise emit-
ted onto the line. This also may limit the EMI level 
of the product, violating certain design goals and 
regulations.

• The effective DC voltage handled is high due to 
the input voltage doubler circuit.

• Lastly, the cost of the voltage doubler circuit itself 
is high because of two large power capacitors.

A better solution to minimize these problems would be
to use a 3-phase inverter bridge, as discussed in the
next section.

Using a 3-Phase Inverter Bridge

The input section is replaced with a standard diode
bridge rectifier. The output section has a 3-phase
inverter bridge. The main difference from the previous
scheme is the way the motor windings are connected
to the inverter. One end of the main winding and start
windings are connected to one half bridge each. The
other ends are tied together and connected to the third
half bridge, as shown in Figure 5. 

Refer to Appendix B: “Schematics” for the schemat-
ics that reference the PIC16F72 with a 3-phase inverter
bridge.

With this drive topology, control becomes more effi-
cient; however, the control algorithm becomes more
complex. The voltages Va, Vb and Vc should be con-
trolled to achieve the phase difference between the
effective voltages across the main and start windings to
have a 90 degree phase shift to each other.

The turn ratio of the start winding to the main winding is
defined by:

EQUATION 1:

where α is the turn ratio, and VMAIN and VSTART are the
effective voltage across the main winding and the start
winding.

In order to have equal voltage stress on all devices,
thus improving the device utilization and provide the
maximum possible output voltage for a given DC bus
voltage, all three inverter phase voltages are kept at the
same amplitude as follows:

EQUATION 2:

The effective voltage across the main and start winding
is given as:

EQUATION 3:  

The voltages are shown in the phasor diagram in
Figure 6.

FIGURE 5: CONTROLLING A PSC MOTOR WITH A 3-PHASE INVERTER BRIDGE
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FIGURE 6: VOLTAGE PHASOR 
DIAGRAM

As seen in the phasor diagram in Figure 6, the voltages
across phase A and phase B are out of phase, and the
phase difference between phase A and phase C is θ
degrees. By applying basic trigonometry,  θ can be
calculated by:

EQUATION 4:  

By applying the Pythagorean Theorem, the voltage
vector V1 can be calculated as:

EQUATION 5:

Because the turn ratio remains constant for a given
motor, α can be a compile time option. With this, θ and
V1 can be precomputed for a given motor. This simpli-
fies the run time calculation. Based on the phase angle,
phase voltages Va, Vb and Vc can be calculated as:

EQUATION 6:

Vdc is the DC bus voltage, and ωt is the angular velocity
of the electrical cycle. The direction of rotation can be
easily controlled by adding or subtracting θ in the Vc
calculation.

Figure 7 shows the phase voltages Va, Vb and Vc, and
Figure 8 shows the effective voltages across the main
winding (VMAIN) and the start winding (VSTART).

Figure 8 also shows that the effective phase difference
between the voltages is 90 degrees and the effective
voltage ratio is α.

FIGURE 7: PHASE VOLTAGES Va, Vb and Vd
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FIGURE 8: VOLTAGE ACROSS MAIN WINDING (VMAIN) AND START WINDING (VSTART)
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IMPLEMENTATION USING THE PIC16F72

In order to control a 3-phase inverter bridge, we need
three PWM pairs with complementary outputs. In addi-
tion, each complementary pair of PWMs needs dead
time in between any OFF and ON switch events to
avoid a DC bus short circuit. The PIC16F72 does not
have these features in the hardware. However, this can
be easily implemented using a general purpose timer
and six output pins as shown in Figure 9.

Generating Software PWMs

The scheme shown here gives a fixed PWM frequency
of approximately 7.9 kHz. Timer1 (1:4 prescale) is
counted up from 00 to 634. At the beginning of the cycle
(when Timer1 = 00), the PWMs controlling the upper
switches (i.e., PWM1, PWM3 and PWM5) are turned
ON. Based on the individual PWM duty cycle, the
corresponding PWM output is turned OFF. 

After five instruction cycles, the complementary PWM
is turned ON. This gives a dead time of 1 μs when the
microcontroller is running at 20 MHz. When the count
reaches 624, all outputs are turned OFF. A new PWM
cycle starts after 10 instruction cycles. 

In the source code provided with this application note
(see Appendix A: “Source Code”), instead of com-
paring the Timer1 values corresponding to the duty
cycle values, a relative count is calculated with respect
to the previous PWM duty cycle. This count is sub-
tracted from 0xFF (Timer1 is configured as an 8-bit
timer) and loaded to the Timer1 register. When the
Timer1 value overflows, in Timer1 overflow ISR, the
corresponding Odd PWM is turned OFF and the corre-
sponding Even PWM is turned ON after five instruction
cycles. This is done for all three pairs of PWM. Refer to
the flowcharts in Figure 10 through Figure 11 for more
details.

FIGURE 9: PWM SOFTWARE IMPLEMENTATION
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FIGURE 10: MAIN LOOP
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FIGURE 10: MAIN LOOP (CONTINUED)
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FIGURE 11: INTERRUPT SERVICE ROUTINES (ISR)
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Initialization

• PORTC<0:5> are initialized to output PWMs. 

• Timer1 is initialized with 8-bit operation and 1:4 
prescale. 

• A/D channels are initialized to read frequency 
reference (AN0), motor current (AN1) and 
heatsink temperature (AN2). 
- Frequency reference is read using a 

potentiometer connected to A/D Channel 0. 
- Motor current is read using a shunt resistor in 

the DC return path. The voltage 
corresponding to the motor current is 
amplified and connected to A/D channel 1. 

• Timer0 is used for setting the motor frequency 
based on the potentiometer setting. On every 
Timer0 overflow, new PWM duty cycles are 
advanced by 10 electrical degrees on the Sine 
table. 

• The Sine table is loaded into RAM
• Timer0 overflow, Timer1 overflow and INT 

interrupts are enabled.

Main Routine

These tasks are done in the MAIN_LOOP routine:

• New PWM duty cycle is calculated by the 
subroutine UPDATE_PWM_DUTYCYCLES

Three pointers pointing to three different values on
the Sine table corresponding to the phase
difference between Va, Vb and Vc. The sine table is
drawn to maximum duty cycle available when the
sine value reaches 90 degrees. Every value is
scaled down based on the frequency input to
follow a linear VF profile. 

• PWM duty cycle sorting is handled by the 
subroutine PRIORITIZE_PWMS

PWM duty cycles calculated earlier are sorted in
ascending order, so that the duty cycle with mini-
mum ON time can be addressed first and PWM
with maximum duty cycle last. Corresponding
Flags are set to indicate which PWM duty cycle
corresponds to which PWM output.

• Timer0 reload value is calculated by the 
subroutine TIMER0_OVERFLOW

Timer0 is used for setting the motor frequency. The
Timer0 reload value is calculated based on three
factors: first is the frequency reference input from
the potentiometer, second is the number of sine
table values, and third is the MCU operating
frequency.

• Polling for the ADC result is handled by the 
subroutine AD_CONV_COMPLETE

ADC conversion is poled in the main routine.
Alternatively, frequency reference (AN0), motor
current (AN1) and heatsink temperature (AN2) are
selected and converted.

Interrupt Service Routines (ISRs)

• Timer1 ISR: In the first three Timer1 overflow 
ISRs, the corresponding Odd PWM output is 
turned off in each ISR. The complementary output 
is turned on after a dead time of five cycles (1 μs). 
In the fourth Timer1 overflow ISR, the PWM cycle 
is restarted. All PWMs are turned OFF and the 
timer is loaded with the value corresponding to 
the lowest duty cycle value. This is repeated for 
each PWM cycle.

• Timer0 ISR: A flag is set to indicate that the Sine 
output should advance by 10 degrees on the Sine 
table. The Timer0 registers are reloaded with the 
value corresponding to the motor frequency 
reference.

• INT ISR: The INT pin is used to interface hard-
ware overcurrent fault. Motor current is compared 
with a fixed voltage reference using an op amp 
comparator. Each time the motor current exceeds 
the reference, in INT ISR a count (0C_COUNT) is 
decremented. If the count reaches zero in one 
Timer0 cycle, then the motor is stopped and 
overcurrent is indicated. This count is reset in 
every Timer0 ISR.
© 2005 Microchip Technology Inc. DS00967A-page 11
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Controlling a 3-Phase Induction Motor

The advantage of the drive topology shown in Figure 5
is the same hardware can be used to control the
speed of a 3-phase induction motor. In order to control
a 3-phase induction motor with a Variable Frequency
(VF) technique, three pairs of complementary PWMs
with dead band are required.

The DC bus is modulated with these PWMs to give
three Sine voltage outputs with 120 degrees phase
shift to each other as shown in Figure 12. This can be
done by changing the offset pointers on the Sine table.
Firmware needs to be recompiled and the part should
be reprogrammed. To reverse the motor direction, the
PWM loaded to two of the phases should be
interchanged.

FIGURE 12: PHASE VOLTAGE FOR 3-PHASE INDUCTION MOTOR CONTROL

PIC16F72 LIMITATIONS

Using the PIC16F72 for control has the following
limitations:

• MIPS: Generating a software PWM takes 
significant processing power. This limits any other 
application that may be required to run on the 
same MCU.

• PWM Frequency Range: The PWM frequency 
range is limited and requires firmware changes. 
The safe PWM frequency range is from 6 kHz to 
10 kHz with an operating frequency of 20 MHz. 
The PWM cycle may have an error up to ±5%. 
The resolution is also limited between 6 to 8 bits. 
In addition to this, generating PWM outputs in 
firmware uses the on-chip Timer, program and 
data memory.

CONTROL USING A PIC18F2431/4431

The PIC18FXX31 MCUs have a state-of-the-art Power
Control PWM (PCPWM) module on-chip. This module
can provide three pairs of complementary PWMs with
programmable dead band. Programming is greatly
simplified using PIC18FXX31 devices, because it
reduces the task of generating the software PWMs,
which takes most of the processor resource on a
PIC16F72. The source code included with this
application note (see Appendix A: “Source Code”)
also includes single-phase VF control using the
PIC18F2431. 

To learn more about using PIC18FXX31
microcontrollers for different types of motor controls,
refer to application notes AN899, Brushless DC Motor
Control Using PIC18FXX31 Microcontrollers
(DS00899) and AN900, Controlling 3-Phase AC
Induction Motors Using the PIC18F4431 (DS00900)
available from Microchip.
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CONCLUSION

Microcontroller-based control for a PSC motor makes
the system easy to implement and have control over
the motor in two directions. Implementing the
algorithm using a 3-phase inverter bridge gives
flexibility and efficiency of control. In addition, a 3-
phase induction motor can be controlled using the
same hardware by making minor modifications to the
firmware. The PIC16F72 is a popular low cost general
purpose microcontroller from Microchip, that can be
used to implement the control algorithm. To a great
extent, PIC18FXX31 devices can provide flexibility in
implementing motor control algorithms.

APPENDIX A: SOURCE CODE

The complete source code is available for download as
a single archive file from the Microchip corporate web
site at:

www.microchip.com
© 2005 Microchip Technology Inc. DS00967A-page 13
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APPENDIX B: SCHEMATICS

FIGURE B-1: PIC® INTERFACE AND POWER SUPPLY (SHEET 1 OF 2)
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FIGURE B-2: POWER SECTIONS AND MOTOR CURRENT MEASUREMENT (SHEET 2 OF 2)
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