SAAB JA-37 Viggen

Performance Assessment

Prepared by
John McIver B.Eng.(Aero)
Temporal Images

SAAB JA-37 Viggen Performance Assessment

1. Overview

 is Swedish for "Thunderbolt". The aircraft has been built in several versions, as follows;

```
AJ-37 single seat all weather attack
JA-37 single seat air defence
SF-37 single seat armed photo reconnaissance
SH-37 single seat armed sea surveillance
SK-37 dual seat conversion trainer
```


 production JA-37 on the 4th of November 1977.
 this information to produce a performance estimate for the aircraft.

2. Dimensions

 and weights are provided in metric units, then converted to imperial units.

Wing Span	10.60 metres	34 feet 9.25 inches
Foreplane Span	5.45 metres	17 feet 10.5 inches
Main Wing Aspect Ratio 2.45		

Length Length	15.45 metres	50 feet 8.25 inches		
Length	16.30 metres	53 feet 5.75 inches		(AJ, excluding probe)
:---				
Length				
(AJ, including probe)				
Height				
Height				

Total Lifting Area	52.20 square metres	$561.88 \mathrm{sq.ft}$	(including foreplanes)
Gross Wing Area	46.00 square metres	$495.16 \mathrm{sq.ft}$	(wing alone)
Foreplane Area	6.20 square metres	$66.74 \mathrm{sq.ft}$	(nett)

Note: the gross wing area is the area of the main wing, including that portion which carries across the fuselage. The foreplane area is the area of the lifting surfaces, not including the portion which carries through the fuselage. The "total wing area" defined in some areas is the sum of the gross wing area and nett foreplane area, and can be misleading.

3. Weights

Only limited weight data (in metric units) has been provided for the aircraft. The following is my best estimate for the actual weights of the aircraft and its component parts.

Empty Weight	$12,200 \mathrm{~kg}$	$26,895 \mathrm{lbs}$	(approx)
Normal Loaded	$16,800 \mathrm{~kg}$	$37,040 \mathrm{lbs}$	(carrying four AAM)
Max Takeoff	$22,500 \mathrm{~kg}$	$49,600 \mathrm{lbs}$	

Up to $6,000 \mathrm{~kg}(13,227 \mathrm{lbs})$ of ordnance can be carried externally.

Takeoff weight	$15,000 \mathrm{~kg}$	$33,070 \mathrm{lbs}$	(clean)
Takeoff weight	$17,000 \mathrm{~kg}$	$37,478 \mathrm{lbs}$	(normal armament)

The cannon has 150 rounds, at 0.36 kg (0.79 lbs) per round for a total weight of 54 kg .

Weight Breakdown

Assuming the figure of $12,200 \mathrm{~kg}$ for a clean, empty aircraft is approximately correct, we can now check one of the other weights to see if it corresponds. An empty aircraft is the condition of the aircraft being fully equipped but with no fuel, pilot or external stores. We have a value for a normal loaded aircraft, which gives us a weight of $17,000 \mathrm{~kg}$ when fitted with 4 air-to-air missiles. If we add weights for a pilot and full internal fuel, plus four Rb-24 missiles (AIM-9L), we get the following;

Clean A/C	$12,200 \mathrm{~kg}$	(includes 150 rounds for gun)
Pilot	100 kg	
Fuel (100\% internal)	4440 kg	(at $6.5 \mathrm{lbs} / \mathrm{US}$ gallon)
$4 \times$ Aim-9L	342 kg	
Total	..-------	

This corresponds approximately to the weight expected. So we can now propose a weight breakdown for the aircraft and its component parts.

Clean A/C	$12,200 \mathrm{~kg}$	$(54 \mathrm{~kg}$ for 150 rounds for gun) $(600 \mathrm{~kg}$ for avionics)
Pilot		
Fuel (100\% internal)	100 kg	
Rb-24 (AIM-9L)	4440 kg for engine)	

4. Ordnance

The aircraft is typically configured to have up to seven (7) external pylons. These are located as follows (with estimated load limits at each location);

$1 \times$ centreline pylon	2000 kg	4410 lbs
$2 \times$ fuselage edge pylons	500 kg	1102 lbs
$2 \times$ inner wing pylons	1000 kg	2205 lbs
$2 \times$ outer wing pylons	500 kg	1102 lbs

A typical air defence loading would include $2 \times \mathrm{Rb} 72$ Skyflash and 2 or $4 \times \mathrm{Rb} 24$ Sidewinder (AIM-9L) missiles. The aircraft is fitted with a single 30 mm Oerlikon KCA cannon. This has 150 rounds available.

5. Engine

The aircraft is fitted with a Volvo Flygmotor RM-8 turbofan engine. This is based on the Pratt \& Whitney JT-8D-22 engine, with a Volvo designed afterburner fitted. The engine has two versions. The RM-8A is fitted to all except the JA version of the aircraft. The JA is fitted with the RM-8B engine; a slightly more powerful version of the engine.

Thrust

RM-8A	25, 970 lbst	11790 kg	max reheat
	14,750 lbst	6690 kg	max dry
RM-8B	28,110 lbst	12750 kg	max reheat
	16,200 lbst	7350 kg	\max dry

Fuel Consumption

RM-8A	$2.47 \mathrm{lb} / \mathrm{hr} / \mathrm{lbst}$	$70.0 \mathrm{mg} / \mathrm{Ns}$	\max reheat
	$0.63 \mathrm{lb} / \mathrm{hr} / \mathrm{lbst}$	$17.8 \mathrm{mg} / \mathrm{Ns}$	$\operatorname{max~dry}$
	$0.61 \mathrm{lb} / \mathrm{hr} / \mathrm{lbst}$	$17.3 \mathrm{mg} / \mathrm{Ns}$	\max continuous
RM-8B	$2.52 \mathrm{lb} / \mathrm{hr} / \mathrm{lbst}$	$71.4 \mathrm{mg} / \mathrm{Ns}$	\max reheat
	$0.64 \mathrm{lb} / \mathrm{hr} / \mathrm{lbst}$	$18.1 \mathrm{mg} / \mathrm{Ns}$	\max dry
	$0.61 \mathrm{lb} / \mathrm{hr} / l \mathrm{bst}$	$17.3 \mathrm{mg} / \mathrm{Ns}$	\max continuous

Dimensions

Length	6.17 metres	RM-8A
	6.24 metres	RM-8B
Max Diameter	1.397 metres	55 inches
Inlet Diameter	1.030 metres	40.55 inches
Max Mass Flowrate	$145 \mathrm{~kg} / \mathrm{sec}$	
Bypass Ratio	1.10	
Max Pressure Ratio	16.5	

Pratt \& Whitney JT-8D-7 Turbofan

For comparison purposes the key performance data for the JT-8 engine are provided here. This is a non-afterburning engine.

6350 kg nett thrust - takeoff - sea level static	
1540 kg nett thrust - cruise - Mach 0.80 at 11,000 metres	
Cruise sfc	$0.81 \mathrm{~kg} / \mathrm{kg} / \mathrm{hour}$
Bypass Ratio	1.10
Air Flow	$141 \mathrm{~kg} / \mathrm{sec}$ at sea level static conditions
Pressure Ratio	15.8
Internal Diameter	0.108 metres
Length	3.75 metres
Dry Weight	1431 kg
No of Spools	2

6. Performance

The following performance and mission profile data is the best estimate from the various sources of data found.

| Max Speed at Seal Level $(4 \times$ AAM $)$ | 838 mph | 1350 kmh | Mach 1.10 |
| :--- | :--- | :--- | :--- | :--- |
| Max Speed at 11, 000 metres | 1365 mph | 2195 kmh | Mach 2.1 |\quad (at 36,090 ft)

Mission Profiles

Ferry range 2000 km (2250 km with Jet-A fuel)
Tactical Radius

- intercept mission	250 miles $\quad 400 \mathrm{~km}$
- hi-lo-hi profile	621 miles (with unspecified external stores)
- lo-lo-lo profile 311 miles (with unspecified external stores)	

For external load of $4 \times 1000 \mathrm{lbs}(454 \mathrm{~kg})$ bombs and fuel
Tactical Radius

$$
\begin{aligned}
& \text { - hi-lo-hi profile } \quad 782 \text { miles } \\
& \text { - lo-lo-lo profile } 532 \text { miles }
\end{aligned}
$$

7. Take-0ff

The aircraft was initially designed to operate from narrow 500 m long runways (1640 feet). Tha actual take-off run is approximately 400 metres (1310 feet). The key points in the aircraft take-off are as follows;

Afterburner is selected then the wheel brakes are released.
The aircraft accelerates to a rotation speed of 135 knots (250 kmh).
About 600 metres of runway is used to get airborne.
After lift-off the undercarriage is retracted and the aircraft accelerates at a 2 to 3 degree climb angle to 367 knots (680 kmh).

Below 190 knots (350 kmh) the aircraft is very sensitive in roll.
Afterburner is cut out at 270 knots (500 kmh) due primarily to noise abatement requirements.
Exceeding 30 degrees angle of attack results in some loss of yaw stability.
Over 30 degrees AOA the aircraft will enter into a "super stall", but is easily recoverable.
There is little natural pre-stall warning, with low buffet levels.

8. Landing

Landing Run	approx 500 m
Landing Speed	220 kmh

The undercarriage is lowered.
The thrust reverser is pre-selected to activate immediately after landing.
The approach is steep.
The aircraft attitude is 15 degrees nose up.
The speed is controlled by the autopilot.
The aircraft crosses the runway threshold at 130 knots (240 kmh).
Touchdown with a no-flare landing at 97 knots (180 kmh).
Touchdown is about 45 metres (150 feet) beyond the runway threshold.
The undercarriage is designed for a landing sink rate of 16 feet/sec (5 m/s).

9. References

Jane's All the World's Aircraft 1985-86
Modern Combat Aircraft Design
by Klaus Huenecke
Airlife Publishing Ltd 1987
The Illustrated Encyclopedia of the World's Modern Military Aircraft
by Bill Gunston
Salamander Books Ltd 1977
The New Observer's Book of Aircraft
by William Green
Frederick Warne \& Co 1986
Modern Air Combat
by Bill Gunston and Mike Spick Salamander Books Ltd 1983

Attack Aircraft
by Roy Braybrook Haynes Publishing Group 1990

World Aircraft Information File - Issue 47
Aerospace Publishing Ltd 1998
Air International - Volume 56 No 2
Key Publishing Ltd February 1999
Aeronautical Vest Pocket Handbook
Pratt \& Whitney June 1978

10. Conversion Factors

The following conversion factors between metric and Imperial units were used at various places in this document.

3.281 feet	$=1.0$ metre
10.76 square feet	$=1.0$ square metres
2.205 pounds	$=1.0$ kilogram
3.785 litres	$=1.0$ US gallon
4.545 litres	$=1.0$ Imperial Gallon
1 knot	$=6080$ feet per second
1 mile per hour	$=5280$ feet per second
1.097 feet per second	$=1.0$ kilometre per hour

11. Liquid Weights

The following liquid densities were used to determine the fuel weights for the aircraft.

JP-1	$6.65 \mathrm{lbs} /$ US gal
JP-3	$6.45 \mathrm{lbs} /$ US gal
JP-4	$6.55 \mathrm{lbs} /$ US gal
JP-5	$6.82 \mathrm{lbs} /$ US gal
Jet-A	$6.74 \mathrm{lbs} /$ US gal
Gasoline	$5.87 \mathrm{lbs} / \mathrm{US}$ gal
Water	$8.345 \mathrm{lbs} /$ US gal

Appendix A: Calculated Aircraft Dimensions

The following dimensions and areas have been determined by scanning a 3-view drawing of the Viggen, then importing it into a CAD program, scaling it appropriately and measuring the specific values shown here. Many of these values will be required for a theoretical drag estimation of the aircraft and other aspects of the performance assessment.

No specific wing section data has been found so the values shown are estimates only, based on standard design assumptions.

Wing
Approximately 4% thick, with maximum thickness at 40% of chord.

| Root Chord 24.9 feet | Tip Chord | 1.8 feet | Taper Ratio 0.07 |
| :--- | :--- | :--- | :--- | :--- |
| | | | |
| Sweep of Quarter Chord Line | 42 degrees | | |
| Wing Semi-Span | 17.5 feet | | |
| Wing Span | 35.0 feet | | |
| Gross Wing Area | 522 square feet | | |

Foreplane

Approximately 6\% thick, with maximum thickness at 40\% of chord.

Root Chord 1.0 feet	Tip Chord	Taper Ratio 0.2 feet	
Sweep of Quarter Chord Line	50 degrees		
Panel Span	5.3 feet		
Panel Area	35.0 square feet		
Geometric Aspect Ratio	0.80		

Vertical Fin

Approximately 5% thick, with maximum thickness at 40% of chord.
Root Chord
13.6 feet
Tip Chord
1.6 feet
Taper Ratio
0.12
Sweep of Quarter Chord Line
Span
Area
Geometric Aspect Ratio
43 degrees
9.0 feet
68.7 square feet
1.20

Fuselage
Length 50.0 feet \quad Width 8.25 feet 7.0 feet

Frontal Area 42 square feet
Surface Area 880 square feet

Appendix B: Calculated Aerodynamic Data

Calculation of Maximum Lift Coefficient

It is possible to make an estimate of the maximum lift coefficient for the aircraft. Available data states the aircraft approach speed is 119 knots, which will be a speed just above the stall speed of the aircraft.

Assuming 119 knots is the aircraft stall speed, we know the wing area and air density, and can approximate the aircraft weight, and so find the lift coefficient for this condition.

We will assume the atmospheric conditions are for sea level and standard ISA conditions. This gives an air mass density of 0.002378 slugs per cubic foot. Also, 119 knots is equal to 201 feet per second.

We have a gross wing area of 562 square feet. Because the aircraft is of canard configuration, the foreplanes generate lift as well as the main wing, so both contribute to the total aircraft lift.

We will assume a standard weight condition for the aircraft for all subsequent analysis. Much of the tactical radius data obtained is for an aircraft in an air defence configuration, carrying 4 air to air missiles. We will assume this is for two short range ((AIM-9L) and two long range (SkyFlash) missiles. It is also normal practice to assume a 50% fuel load for performance analysis such as this, so we will assume a 50% internal fuel load and no external fuel.

This then gives a weight of 33,244 pounds (15,077 kilograms).

Clean A/C	$12,200 \mathrm{~kg}$
Pilot	100 kg
Fuel (50\% internal)	2220 kg
$2 \times$ SkyFlash	386 kg
$2 \times$ Aim-9L	171 kg
Total	$---.-15,077 \mathrm{~kg}$

33,244 pounds

```
CL = (2 x Weight) / (rho x area x velocity x velocity)
CL = (2 x 33,244) / (0.002378 x 562 x 201 x 201)
CL = 1.23
```

In practice the actual lift coefficient will be probably be somewhere between 1.25 and 1.30 but a value of 1.23 (based on a reference wing area of 562 square feet) is a safe value for controlled flight at a minimum speed.

Appendix C: Performance Analysis

Based on the data presented here, a performance estimate for the Viggen has been prepared. This was generated using the suite of computer programs produced by Mr Sidney A Powers, called "BASIC Aircraft Performance" (Kern International, Inc. Copyright 1984).

This suit of programs includes routines to predict aircraft drag, format engine data and determine various aircraft performance parameters, including mission analysis and flight performance at varying altitudes.

DRAG ESTIMATE

These routines were used to iteratively obtain a likely drag for the Viggen aircraft, then to determine other data, including flight envelopes at various load factors, turning performance and mission performance for varying stores configurations.

In obtaining a drag estimate for the aircraft it is always necessary to define this in relation to the aircraft's engine performance. The engine performance (thrust and fuel flow, and their variation with speed and altitude) was estimated based on the best data available, but cannot be guaranteed to truly represent the Viggen engine. So the drag data presented is that which corresponds to the engine data used here. If another engine computer model is used to generate engine performance then the drag values may need to be adjusted to suit.

Drag is presented in the typical way for computer analysis, as a profile drag coefficient and a wing spanwise efficiency factor. Together these will define the drag polar for the aircraft. These values have been provided at a range of aircraft speeds, to allow for the relative effects of subsonic, transonic and supersonic flow. That is,

CDo	=	Profile Drag Coefficient
CDi	=	Induced Drag Coefficient
CD	=	Total Drag Coefficient
e	=	Spanwise Efficiency Factor
CL	=	Lift Coefficient
AR	=	Wing Aspect Ratio
Pi	$=$	3.14159
CD	$=$	CDo + CDi
CDi	$=$	(CL x CL) / (Pi x AR \times e)

Initially a set of drag coefficients was obtained using one of the routines provided in the "BASIC Aircraft Performance" suite. Prior use of this program had indicated it provided only a very approximately correct value, and then only at lower speeds. Using this as a starting point these drag data were revised using an iterative procedure. The drag values would be used to generate a flight envelope, then this envelope would be compared with the quoted aircraft performance (stall speed, maximum speed at low level, maximum speed at altitude and service ceiling). The drag data would then be adjusted as required to better match the known performance of the aircraft.

Table 1 shows the geometric data input into the analysis program, and used to obtain the initial drag estimate for the aircraft. Table 2 shows the final drag data obtained after interation, and used for the final performance assessments. Table 3 shows the typical output for one velocity for the "BASIC Aircraft Performance" drag prediction routine, while Table 4 shows the engine data which was used for this analysis.

Figure 1 shows the estimated variation of the aircraft profile drag coefficient with speed, while Figure 2 shows the corresponding wing spanwise efficiency factor and its variation with speed.

Table 1	FILE: (F)VIGGN	
	IDENTIFIER: SAAB JA-3	7 VIGGEN
		= = = = = = = = =
	ZERO FUEL WEIGHT = FUEL WEIGHT =	27」20 9790
	NUMBER OF ENGINES =	1
	THRUST MULTIPLIER =	1
	FUEL FLOW MULTIPLIER =	1
	$C L(M A X)=$	1. 25
	WING===========================0=100	= = = = = = = = =
	THEORETICAL AREA $=$	495.16
	ASPECT RATIO =	2.45
	TAPER RATIO =	0.07
	SWEEP OF $\mathrm{X} / \mathrm{C}=$	42.0
	$x / C=$	0.25
	(T/C)MAX $=$	0.04
	X/C LOC OF (T/C)MAX =	0.4
	AIRFOIL RN/C =	1. $76304 \mathrm{E}-83$
	HORIZONTAL TAIL===FLAPPED===========: EXPOSED AREA =	$\begin{aligned} & ========== \\ & \text { ?D. } \end{aligned}$
	EXPOSED ASPECT RATIO $=$	0.8
	EXPOSED TAPER RATIO =	0.2
	SWEEP OF X / C	50.0
	$\mathrm{x} / \mathrm{C}=$	0.25
	($T / C) M A X=$	0.06
	X / C LOC OF (T/C)MAX $=$	0.4
	VERTICAL TAIL===SINGLE/FLAPPED====== SINGLE FIN AREA =	$\begin{aligned} & =========== \\ & \text { b } \end{aligned}$
	GEOMETRIC ASPECT RATIO =	1.20
	EXPOSED TAPER RATIO =	0.12
	SWEEP OF $\mathrm{X} / \mathrm{C}=$	43.0

Table 2	FILE :	DG)VIGGN
	IDENTIFIER :	SAAB JA-3? VIGGEN
	********** REVIEW DRAG	TABLE **********
	$\begin{gathered} \text { MACH NO. } \\ 0.400 \end{gathered}$	$\begin{gathered} \text { CDO } \\ 0.01770 \end{gathered}$
	0.600	-.01730
	0.800	-. 0
	0.900	0.02150
	0.950	0.03140
	1.000	0.04130
	1.050	0.04420
	1.100	0.04500
	1.200	0.04450
	1.400	0.04290
	1.600	0.04290
	1.800	0.04290
	2.000	0.04290
	2.200	0.04290

Table 3			REFE	FILE: DG SAAB JA- SONIC ZER $M=\square$ $\text { ALT }=$ RN/FT = RENCE WING) TEST 37 VIGGE O-LIFT . 600 - $4.2 \mathrm{bE}+$ AREA $=$ AREA	drag 495.2				
	component	SuET	LENGTH	RN	$\begin{aligned} & \text { FORM } \\ & \text { FACTOR } \end{aligned}$	CF	INTERF FACTOR	CDW	CDO	F
	WING HORIZONTAL	609.2 143.2	13.91 10.74	5.93E+0? $4.58 \mathrm{E}+07$	1.048 1.073	$0.0021 ?$ 0.00225	1.143 1.351	0.00000 0.00000	0.00319 0.00094	1.580 0.467
	vertical	140.0	9.12	$3.89 E+07$	1.060	0.00231	1.340	0.00000	0.00093	0.459
	fuselage	880.0	50.00	2.13E+ロ8	1.227	0.00181	1.015	0.00000	0.00400	1.980
	misc.	0.0	0.00	0.00E+00	0.000	0.00000	0.000	0.00000	0.0086	4.290
	total	¢,772.3							0.01772	8.776
	CFE $=0.00495$									

SPAN EFFICIENCY FACTOR $=0.915$

Mach Number
Figure 1

0.800	$\begin{array}{r} 23740 \\ 9,120 \\ 5,120 \end{array}$	$\begin{array}{r} 59,825 \\ 5 _837 \\ 3 ヶ 123 \end{array}$
0.900	$\begin{array}{r} 257187 \\ 9,224 \\ 4,989 \end{array}$	$\begin{array}{r} 63,471 \\ 5,703 \\ 3,043 \end{array}$
1.000	$\begin{array}{r} 26,582 \\ 9,080 \\ 4,281 \end{array}$	
1.200	$\begin{array}{r} 287190 \\ 7,243 \\ 458 \end{array}$	$\begin{array}{r} 71039 \\ 4 \text { י } 43 \\ 279 \end{array}$
1.600		
MACH	ALTITUDE ： THRUST	Fロad FEET FUEL FLOW
0.400		$\begin{array}{r} 35,547 \\ 3 _784 \\ 2,086 \end{array}$
0.600		$\begin{array}{r} 39 っ 352 \\ 3 _851 \\ 2 ヶ 125 \end{array}$
0.800	$\begin{array}{r} 18,050 \\ 6,503 \\ 3,715 \end{array}$	$\begin{array}{r} 45,486 \\ 4 っ 162 \\ 2 っ 266 \end{array}$
0.900	$\begin{array}{r} 19,36 ? \\ 6 ヶ 861 \\ 3,773 \end{array}$	$\begin{array}{r} 48,805 \\ 4,391 \\ 2,302 \end{array}$
1.000	$\begin{array}{r} 20768 \\ 6,766 \\ 3,479 \end{array}$	$\begin{array}{r} 51,933 \\ 4,458 \\ 2 ヶ 122 \end{array}$
1.200		$\begin{array}{r} 60,308 \\ 4,052 \\ 1,053 \end{array}$

	\square	\square
1．200	$\begin{array}{r} 4,495 \\ 0 \end{array}$	
1.400	$\begin{array}{r} 4.818 \\ \square \end{array}$	
1．600	$\begin{array}{r} 500 \\ \square \end{array}$	$\begin{array}{r} 13 \\ 0 \end{array}$
2.800	$\begin{array}{r} 7,468 \\ 0 \end{array}$	
2.200	$\begin{array}{r} 8.820 \\ 0 \end{array}$	$\begin{array}{r} \text { b } 2 ⿰ 冫 ⿰ 亻 ⿱ 丶 ⿻ 工 二 十 \end{array}$

PERFORMANCE ESTIMATE

Once a specific set of drag and thrust data has been defined，for a particular aircraft geometric configuration，it is possible to determine the aircraft＇s performance．The most useful initial performance data is the aircraft flight envelope．For the Viggen．this has been estimated for a number of load factors．Table 5 shows the flight envelope data generated by the performance analysis program，while Figure 3 presents the flight envelope in a graphical form．The flight envelope approximates to the published performance values for the aircraft in terms of maximum speeds，stall speed and expected service ceiling．

LOAD FACTOR＝1						
	＜－－－－－MINIMUM－－－－－＞＜－－－－－MAXIMUM					
ALTITUDE	M	KTAS	KEAS	M	KTAS	KEAS
0	0．18？	124	124	1．136	752	752
5000	0.205	133	124	1．123	730	678
10．000	0．225	144	124	1.091	เา	597
159000	0．249	156	124	1．173	735	583
20，000	0.275	169	124	1.485	912	bь？
25，000	0.306	184	124	1．635	984	bடロ
30，000	0.342	202	124	1.762	\％1039	637
359000	0．396	228	」27	1.919	\％1．06	618
40，000	0.494	283	141	2.897	\％．1204	597
45ヶ000	0.597	344	152	1.98	\％1136	502
50.000	－．729	418	164	1.818	584	2วๆ
51,000	0.753	432	165	0.977	572	219
52．000	0．738	446	16？	0.983	564	211
53.000	0.807	463	169	0．769	55b	203
54 ¢ 000	0.844	484	172	0.751	545	194
55，000	0.888	509	177	0.915	525	183
LOAD FACTOR＝ 2						
	＜－－－－MINIMUM－－－－－＞＜－－－－－MAXIMUM－－－－－－＞					
ALTITUDE	M	KTAS	KEAS	M	KTAS	KEAS
0	0.264	175	175	1．131	748	748
5，000	0．290	188	175	1.113	724	672
10.000	0.318	203	175	1．068	682	58b
15ヶ000	0．351	220	175	1．123	203	558
20，000	0.397	244	178	1.3114	805	589
25，000	0.484	291	195	1.504	906	607
30.000	0.584	344	21］	1.594	939	576
35，000	0．726	419	234	1.003	578	323
40，000	0．000	\square	\square	－．000	\square	\square

LOAD FACTOR = 3						
	<----MINIMUM-----> <-----MAXIMUM----->					
ALTITUDE	M	KTAS	KEAS	M	KTAS	KEAS
\square	0.324	214	214	1.123	743	743
5,000	0.356	232	215	1.058	688	639
10.000	0.415	2 b	228	1.036	b6l	5b8
159000	0.492	309	245	1.049	657	522
20.000	0.588	361	264	1.051	646	472
25,000	0.700	422	283	1.006	60	406
30,000	0.845	498	305	0.752	56	344
35,000	0.000	\square	\square	0.000	\square	\square
LOAD FACTOR = 4						
	<-----MINIMUM----->			<-----MAXIMUM----->		
ALTITUDE	M	KTAS	KEAS	M	KTAS	KEAS
\square	0.413	273	273	0.989	654	654
5000	0.476	309	287	1.000	b50	603
10.000	0.554	354	304	1.000	b38	549
15,000	0.653	409	325	0.770	620	492
20.000	0.765	470	343	0.768	594	434
25,000	0.000	\square	\square	0.000	\square	\square
LOAD	FACTOR	$=5$				
	<----MINIMUM----->			<-----MAXIMUM----->		
ALTITUDE	M	KTAS	KEAS	M	KTAS	KEAS
\square	0.517	342	342	0.000	\square	\square
5000	0.598	389	361	0.976	635	589
1000000	0.692	442	380	0.768	618	531
159000	0.810	507	403	0.939	589	46 ?
20,000	0.000	\square	\square	0.000	\square	\square

Mach Number
Figure 3

LOAD FACTOR = b						
	$\begin{gathered} <---- \text { MINIMUM-----> } \\ \text { M KTAS KEAS } \end{gathered}$			<-----MAXIMUM----->		
ALTITUDE				M	KTAS	KEAS
\square	0.b2b	414	414	0.000	\square	\square
5,000	0.72l	469	435	0.749	617	573
10.000	0.846	540	464	0.917	58	503
1,59000	0.000	\square	\square	0.000	\square	\square
LOAD	FACTOR $=$?					
	<----MINIMUM----->			<-----MAXIMUM----->		
ALTITUDE	M	KTAS	KEAS	M	KTAS	KEAS
0	0.744	492	492	0.933	bl?	617
000 5	0.898	584	542	0.902	58	545
10.000	0.000	\square	\square	0.000	\square	\square

In an attempt to verify the performance data estimated here with the published performance figures a ferry mission was defined. Table 6 shows the specific legs making up this ferry mission, while Figure 4 displays the results obtained from the analysis program. The published figures indicate a ferry range for the aircraft of 1250 miles (2000 kilometres). The computer prediction gives calculated a ferry range of 1088 miles (945 nautical miles).

Figure 4

Further checking of the drag data estimated here was carried out by comparing a climb to altitude．This information was provided in the published data for the aircraft，with a climb to 32，810 feet（10，000 metres）quoted as taking 1.4 minutes（84 seconds），for an aircraft loaded with four AAM stores plus 50% internal fuel，and climb performed at maximum afterburner．The analysis program indicated a time to 32,000 feet，for the same aircraft configuration，would take 1.7 minutes（102 seconds）． The program output for this climb is presented in Table 7，with Figure 5 showing the actual，and estimated，time to climb in a graphical format．

Table 7

> | CLIMB VERIFICATION | |
| :--- | :--- |
| FILE | $:$ |
| | CF)VIGGN |
| AIRCRAFT | $:$ SAAB JA-37 VIGGEN |
| ENGINE | $:$ VOLVO FLYGMOTOR RM-AB TURBOFAN |
| MISSION | $:$ |
| SLIMB TO 32810 FEET | |
| AR | 495.16 |
| NO OF ENGINES: | 1 |

TIME MIN	$\begin{array}{r} \text { ALT } \\ \text { FT } \end{array}$	$\begin{gathered} \text { RANGE } \\ \text { NM } \end{gathered}$		$\begin{aligned} & \text { WEIGHT } \\ & \text { LBS } \end{aligned}$	FUEL LBS	$\begin{aligned} & \text { TAS } \\ & \text { KTS } \end{aligned}$	$\begin{aligned} & \text { EAS } \\ & \text { KTS } \end{aligned}$	MACH	$\begin{aligned} & R / C \\ & F T / M I N \end{aligned}$	$\begin{aligned} & \text { SR } \\ & \text { NM/LB } \end{aligned}$	CL	CDD	$\begin{aligned} & \text { FUEL } \\ & \text { FLOW } \\ & \text { LB/HR } \end{aligned}$	THRUST	E	L／D
0.0		\square	\square	0\％ 3	ๆ，ア90	$\square . \square$	$\square . \square$	0.000	\square	0．0000	0.000	－．	\square	\square	0．000	0.0
CLIMB TO	32810 F	FEET AT	BES	T R／C												
$0 . \square$		\square	\square	067910	ๆ，ア90	555.4	555.4	0.840	29，ヨ27	0.0074	－	－	747654	29ッ625	0.764	3.6
0．1	2ヶ000		1	36ヶ82b	ワっ706	551．3	535.4	0.837	28っbا	0．0076	－．077	0．01919	727181	28ヶ644	0．764	3.8
0．1	47000		1	36ヶ742	9ヶเว2	551．0	519．3	0.845	27ヶ906	－．0079	0．081	0.01940	レ9ヶ82b	27，654	0．764	4.0
0.2	b．000		2	36ヶ69	9，539	551．5	504.4	0．851	27，	0.0082	0.086	0.0196	67ヶ371		0.764	4.1
0.3	B		3	36，576	9，456	552.5	490.0	0.859	26っ182	0.0085	0．091	－．01975	64ヶ872	1 25174	0.764	4.3
0.4	10．000		3	36，473	9， 373	553．7	476．1	0．8b？	25っ23l	0.0089	－．096	－ 0.020	b2っ284	64．71	0.764	4.4
0.4	12ヶ000		4	36，411	ワっ291	555.5	462．8	0.877	24.146	0.0093	－．101	－．02062	59っ696	23－6ا	0.764	4.5
0.5	14.800		5	3ьヶэコๆ	ๆ， 209	541．5	436.7	0．8bl	22ヶ869	0.0096	0．114	－．02002	56，196	2ᄅっ260	0.764	5．1
0.6	16．000		6	36，24？	ワっ12？	537．1	419.5	－．8bl	21，	－．0101	－．123	0.02001	53っ25？	2lı097	0．764	5.4
0.7	18．000		？	36ヶリ65	9，045	53b．8	405.7	0．8b？	20，524	0.0106	－．131	0.02025	50，574	20．046	0.764	5.7
0.8	20．000		7	36，082	ロッフレ2	538．］	393．3	0．87b	19，417	－0．0112	0．139	0.02058	48－005	19．050	0.764	5.8
0.7	22ヶ000		8	35ヶワワワ	8 ロロ79	538．6	380.5	0.884	18っ105	0.0119	0．148	－．02088	45722l	17ヶワ27	0.764	b． 0
1.0	24.800		q	655971	8，	528．b	36ロ．8	0.875	16，bl5	0．0126	0．165	0.02053	41，¢7？	16ヶ63	0.764	b． 5
1.2	2bı000		11	35ヶ831	8，	525.0	345．7	0．87b	157295	0.0134	－．179	－．02058	39，178	15，524	0．764	¢． 9
1.3	28ヶ000		12	35，745	8， 225	525．8	334.2	0.884	14っ120	0.0143	－1．191	0.02091	36，71？	14，55b	0．764	7.0
1.4	30.000		13	35467	8 B 537	524．8	321．7	0．891	12，945	0.0153	0.205	－02114	34，	13，597	0．764	7.3
1.6	32ヶ000		14	35，5b	8.446	514.4	303．7	0.881	117104	0.0168	0.230	0．02076	30ヶ600	12．185	0.764	7.7
1.7	32，810		15	35，529	8.409	513.0	298．5	0．881	10，4b2	－．0175	ロ．2зв	－．02079	29，332	11.697	0．764	7.8

Figure 5

Figure 6

As there was a discrepancy with the actual and calculated ferry ranges (1250 miles compared with 1088 miles), a little further investigation was carried out. The actual ferry range was at an unspecified cruising altitude, so the ferry mission was run for a range of different cuise altitudes. The results of this analysis are shown in Figure 6 . This indicated a maximum achievable range of about 960 nautical miles (1105 miles), which is about 13% less than the published figure for tha actual aircraft.

Overall, the discrepancies in the ferry range and climb performance are most likely due to the use of less than perfect engine performance data. Better engine data would probably give a closer match to the actual aircraft performance. At present, the engine and drag data currently used in the computer analysis program will give conservative performance results.

Finally, a table of data has been provided to define the predicted manoeuvre performance of the aircraft. This data is for a range of velocities and altitudes, and is presented in Table 8. Estimates are given for maximum turnrate, specific excess power, specific range and a few other parameters.

ALTITUDE $=1.0000$									
＜－－－－－－－－－－－－－MAX POWER－－－－－－－－－－－－－－＞＜－－－－－－－CRUISE POWER－－－－－－－－－＞									
			T RATE	TR／FF	P－SUB－S	S RNG	F FLOw	THRUST	
MACH	CL－M	N－MAX	DEG／S	DEG／LG	FT／SEC	NM／LB	LB／HR	LB／ENG	CL－C
0.30	1． 250	1．77	8.4	0.6	140．7	0.0685	2ヶフ72	47640	0．704＊
0.40	1． 145	2．89	1.1 .6	0.7	213.3	0．1231	2ヶ074	3，587	0．396
0.50	0．917	3.62	1.1 ． 9	0.8	280.4	0．1．524	27094	37615	0.254
0.60	－．7bl	4.32	$12 . \square$	0.8	342.2	0.1545	2，478	4 Tl 7	－．176
0.70	0．655	5.06	1．2．1	0.8	408．6	0.1442	$3 ヶ 098$	57084	－．129
0.80	0.573	5.78	12．2	0.7	470.6	0.1311	3 3896	6っ2bロ	0．097
0.90	0.485	b．20	1．6．6	0.7	483.6	0.0974	5	ๆって2l	0.078
1.00	0.246	3.88	6.4	0.3	179．7	0.0132	48 ¢297	21，235	0.063
1.10	0.000	1.00	0.0	0.0	－17．6	0.0097	70，729	27っ862	0.052
ALTITUDE $=20000$									
MACH	CL－M	N－MAX	T RATE DEG／S	TR／FF DEG／LG	$P-S U B-S$ FT／SEC	S RNG NM／LB	$\begin{aligned} & \text { F FLOW } \\ & \text { LB/HR } \end{aligned}$	THRUST LB／ENG	CL－C
0.30	1．250	1．19	3.8	0.4	68．8	0.0344	57355	Ьっ269	1．053＊
0.40	1．176	2.02	7.8	0.8	128．6	0.0944	27604	4 T 181	0.592
0.50	0.764	2.55	в． 3	0.8	183．0	0.1410	2ヶ】78	3，558	0.379
0.60	0.807	3.07	8.6	0.8	233．8	0.1680	2，195	3ヶ586	－．263
0.70	0.703	3.63	8.9	0.8	291．3	0.1750	2，45？	37984	－．193
0.80	－．b22	4.20	ๆ．］	0.7	347.6	0.1700	2ヶ891	4 ¢ 634	0.148
0.90	0.538	4.60	8． 9	0.7	374.4	－．1329	$4 ヶ 762$	6，522	0．1．7
1.00	0.324	3.42	5.8	0.4	197.0	0.0200	30，761	14，524	0.095
1.10	0.208	2．ь6	4.0	0.3	118．4	0.0147	45っ263	18，947	0.078
1.20	0．138	2.09	2.7	0.2	68．ᄅ	0.0135	54ヶロワ	22ヶ」ア6	0．06
1.30	0.113	2.02	2.4	0.1	bl．b	0.0123	64，947	25，436	0.056
1.40	0.087	1.80	1.9	0．1	45.6	0.0115	74795？	28ヶ863	0.048
1.50	0．031	1.00	0.0	0.0	－9．5	0.0107	86， 317	33ヶ033	0.042

ALTITUDE $=3000$									
MACH	CL－M	N－MAX	$\begin{aligned} & \text { T RATE } \\ & \text { DEG/S } \end{aligned}$	$\begin{aligned} & \text { TR/FF } \\ & \text { DEG/LG } \end{aligned}$	$\begin{aligned} & P-S U B-S \\ & F T / S E C \end{aligned}$	$\begin{aligned} & S \text { RNG } \\ & N M / L B \end{aligned}$	$\begin{aligned} & \text { F FLOW } \\ & \text { LB/HR } \end{aligned}$	$\begin{aligned} & \text { THRUST } \\ & \text { LB/ENG } \end{aligned}$	CL－C
0.40	1．189	1.30	3.9	0.6	42．8	－ロご1	ワา040	5759	－．715＊
0． 50	－．981	1.68	5.0	0． 7	89．5	0．0945	3ヶ118	47155	－．585＊
0.60	ロ．838	2.06	5.6	0．7	134.0	0．1547	2ヶ285	3ヶ607	0.406
0．70	－．732	2.45	5.7	－． 7	177．2	0．1854	2ヶ225	3 ヶ523	－．2ワワ
0.80	0.650	2．84	b．2	0.7	219．4	－．2001	2ヶ356	$3 ヶ 723$	ロ．2こワ
0.70	0．573	3．17	b． 2	0.6	249．3	－1．1526	3，475	4 ヶ7ワ4	0．181
1.00	－．378	2．58	4.4	0.4	154．3	－．0284	20ヶ786	ワッチ12	0.146
1.10	ロ．283	2． 34	3.6	0.3	128．？	－－－2	こワっここ5	12， 756	－．121
1．20	ロ．231	2．27	3．1	ロ．2	1224．4	－．0203	347858	14ヶ824	0．102
1.30	－．203	2．34	3.0	ロ．2	133．9	－．0183	417791	16ヶタワ7	0.087
1.40	－．177	2． 37	2．8	ロ．2	138.0	0．0170	48，562	19ヶロ88	0.075
1.50	－．146	2．24	2.5	－．1	119．0	－．0157	56，170	21ヶ756	0.065
1.60	－．113	1．98	2．0	－．1	86． 3	－．0148	b3ヶ664	24ヶ624	0.057
1.70	0．077	1.52	1.3	－．1	38．5	0．0141	70ヶ942	こアッ68ロ	0.051
1.80	0．013	1.00	0.0	0.0	－26．5	0．0136	77，950	30ヶ932	0.045
ALTITUDE $=40000$									
MACH									
MACH									
0.50	－．950	1．01	0.6	－．2	2．11	0.0204	14， 4 －	57705	ロ．937＊
0.60	－．813	1．25	2.4	0.5	36.1	0.0413	8 ¢ 333	47413	－．651＊
0．70	－．712	1.49	3.0	0.6	67.2	0.0754	5 ¢ 3 ¢	3ヶ788	0.478
0．80	0.634	1． 73	3.4	0.6	96． 3	－．1198	3ヶタコワ	37541	0．366
0.70	0． 553	1.91	3.4	0．6	1113.7	－．1033	4ヶ798	37955	0．289
1.00	－．360	1． 54	2．2	0.4	57．6	0．0362	15485	7，048	0．234
1.10	－．292	1．51	2．0	0.3	56．9	－．0301	20ヶ985	ロッフワ2	－．194
1．20	－．260	1.60	2．0	ロ．2	72.9	－．028？	23ヶ974	107846	0．163
1.30	0．241	1.74	2．1	ロ．2	93．7	－．026？	27ヶ964	11ヶ2ア？	0.139

